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Two-dimensional turbulence near the viscous limit 
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(Received 8 May 1972 and in revised form 21 September 1973) 

Two-dimensional incompressible motion is generated by a steady external body 
force varying sinusoidally with a transverse co-ordinate. Such flow is found to 
be unstable for Reynolds numbers greater than 24, and under these conditions 
evolves towards a new steady state. This ‘steady-eddy’ state is itself unstable 
in a sense, and its breakdown suggests the catastrophic onset of a cascade of 
turbulence. The mechanics of this cascade can be represented by a kind of re- 
cursion system in which the turbulence dynamics of one scale is repeated in the 
next, and a law of turbulent stress results. The spectrum of kinetic energy gener- 
ated by a steady input of momentum at a discrete wavelength shows a rapid 
decrease (as k5) towards shorter wavelengths but a much slower decrease (as k) 
towards longer wavelengths. 

1. Introduction 
One of the fundamental problems in the theory of turbulence is that of relating 

the spectrum of the fully developed turbulent motion to the spectrum of the 
energy input. Here we tackle the simplest of these problems: given that energy 
enters the system at a single wavelength to deduce how this energy is redis- 
tributed by the consequent motion, assumed two-dimensional. Because this conse- 
quent motion is not uniquely defined (i.e. we are treating turbulence) additional 
hypotheses are needed in order to close the problem. These will be specified in 
physical, rather than ensemble, space, and this allows the conjectured evolution 
of the flow to be visualized rather readily. 

We shall make the hypothesis that a theory relating the structure of small 
amplitude disturbances to the form of the laminar flow on which they are super- 
posed can be used to infer some properties of the fully developed turbulent 
motion. This hypothesis has already proved useful in the description of the trans- 
fer properties of the large-scale baroclinic eddies of the troposphere (Green 
1970) as regards their scale, intensity and fluxes of energy and of momentum. 
Here we shall suppose that the turbulence developed from a disturbance of in- 
finitesimal amplitude initially superimposed on the mean flow. The final turbu- 
lent state reached is found to depend little upon the character of the initial dis- 
turbance. 

The assumed two-dimensionality means that, for realistic truncations, alge- 
braic manipulations are kept to a minimum but that direct comparison with 
those real flows that are essentially three-dimensional is unlikely to be profitable. 
In  view of the speculative nature of the theory it is desirable that some 
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comparison be made with two-dimensional flows before embarking on a three- 
dimensional version. 

While this paper was being reviewed my attention was drawn to a similar study 
by Lorenz (19726). The treatments are, however, essentially different mainly 
because, though each relies on being able to separate out a small subset of im- 
portant turbulent interactions in wavenumber space, the criteria for importance, 
and hence the interactions selected, are different. 

2. The model system 

equation 

where the flow is incompressible and buoyancy forces are neglected. The body 
force is to be thought of as the forcing due to sources of momentum not included 
explicitly. For example, in conditions of ordinary convection, buoyancy forces 
act as a source of vertical momentum and would be represented in F. 

Again, large-scale quasi-horizontal baroclinic eddies in the atmosphere and 
oceans, because they tend to transfer conserved quantities (principally potential 
vorticity and energy) down-gradient, are thereby constrained to transfer 
momentum up-gradient and hence inject momentum into the baroclinic zones 
(see Green 1970). In  this case the Reynolds stress behaves like a source of momen- 
tum for the mean flow. Where the resulting jets are unstable to barotropic dis- 
turbances (likely at  least in the mesosphere, i.e. the layer of smaller static 
stability between about 60 and 80 km, and in the western boundary currents 
of the oceans) the present theory may be appropriate to the barotropic break- 
down phase of the motion. 

In  order to have a well-defined scale of energy input we suppose that the body 
force varies sinusoidally in a transverse direction and is independent of time. 
Let the x axis be directed along the body force in the direction denoted by the 
unit vector i with the y axis in the perpendicular direction j and the body force 
have amplitude px and wavelength 2771,~ in the y direction. A possible solution 
is the steady laminar flow given by 

Consider the motion generated by the body force F defined by the momentum 

p DvlDt + V p  - pvV2v = F, 

where 

and v is the kinematic coefficient of viscosity. This flow satisfies Rayleigh’s 
criterion for inviscid instability and, as we shall show, a range of perturbations 
can grow with time. 

We suppose that the eddy which grows most rapidly when of small amplitude 
will eventually dominate the finite amplitude flow. This hypothesis will be 
referred to below as the selection principle, and it implies that the flow remains 
two-dimensional. Thus Lin (1955, p. 27)) reporting Squire, shows that any 
three-dimensional disturbance of a two-dimensional parallel flow will have 
the stability characteristics of an equivalent two-dimensional disturbance for 
a lower Reynolds number, so that the fastest growing eddy will be two- 
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dimensional and in the x, y plane. Assuming the fluid to be incompressible, a 
stream function $ can be used for the velocity field, 

and the normal component of the vorticity equation usefully describes the flow: 
vz = -a$/ay, vy = a+/ax, 

3. Linearized stability analysis of sinusoidally sheared flow 

flow defined by ( l ) ,  with the stream function for the perturbation of the form 

where 2 n / h  is thexwavelength and w is the amplification rate of the perturbation. 
The condition that $' satisfies the linearized form of (2) can be written as 

I n  the usual manner consider constant-shape perturbations of the initial 

$' = Re (exp (ihx + wt)f(y)}, 

where R = X/V~,U~ is a Reynolds number for the equilibrium flow, cr = (vp/x) w 
is the non-dimensionalized amplification rate, p = h / p  is the non-dimensional- 
ized x wavenumber and 7 = py is the non-dimensionalized y co-ordinate. The 
solutions of (3) are not in general periodic in y, but in view of the periodicity in 
the mean flow and the absence of material boundaries it seems intuitively reason- 
able that the most unstable mode should be periodic in y and have the same 
wavelength as the original flow. If this assumption is made f can be expanded in 
the form 

and (3) is satisfied provided that the coefficients satisfy the three-point recur- 
rence relation 

(similar to that for Mathieu's equation). Dividing through by b, we see that the 
ratio of successive coefficientsis, for large n, either b,,,/b, N - 2 in2 /pR  or i pR /2n2 .  
The first series is divergent so is rejected. The second series gives two possible 
solutions: one odd, one even. The nature of the asymmetry of the odd solution 
(that with 6, = 0)  with respect to the mean flow field means that momentum 
cannot be transferred so as to decrease the kinetic energy of the original flow, 
hence that this solution must be stable (there is no alternative energy source). 
The even series (with 6, = 1 say) is readily summed to any desired degree of 
accuracy and determines the eigenvalue w (or cr) in terms of h (or p ) .  Taking 
only the first two terms of the series by putting b, = b-, = 0 gives 

and (4) 
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FIGURE 1. Growth rate d of eddies in sinusoidally sheared flow as a function of wavenumber 
for different values of the Reynolds number R = A/v ,  where A is the amplitude of the 
stream function for the mean flow. Thin lines show the two-term approximation obtained 
from (4). Thick lines show accurate solutions obtained by summing more terms in the 
recurrence relation. Notice the well-defined maximum in the growth rate and the tendency 
for viscous dissipation to favour the longer waves. 

This approximation is compared with accurate solutioiis (for which up to six 
terms need to be included) in figure 1, where it is seen to give a tolerable approxi- 
mation. Even in the least favourable circumstance, where R -+ co and energy 
penetrates furthest towards short wavelengths, the two-term approximation to 
the amplification rate is correct to  within 10 %. This fidelity is important because 
a similar two-term approximation forms the basis for the subsequent nonlinear 
calculations. 

The flow satisfies Rayleigh’s criterion for inviscid instability, and growing 
waves are possible for all values of the Reynolds number greater than 29. This 
is obviously true of the two-term approximation giving (4), and the following 
argument shows it to be true of the accurate solution. We seek the neutral wave 
(for which the amplification rate vanishes). Putting = 0 and letting p2+0  
we find that the terms b, contain, for n 2 2 ,  a contribution proportional to 
( 2  - R2)/p2 .  Thus these higher coefficients become unbounded unless R2 + 2 
as p 2  + 0 for the neutral-stability curve. 

Figure 1 shows that p is less than unity for growing eddies: that is, the (x) 
wavelength of the developing eddy is greater than the (y) wavelength of the 
original flow. Thus, as energy is transferred from the wavenumber ,u of the basic 
flow to the higher wavenumber (h2i-,u2)9 by the instability, energy also appears 
a t  the lower wavenumber A. Some rather important consequences of this feature 
are discussed in 5 8. This property was demonstrated for two-dimensional, 
neutrally buoyant, inviscid flow by Fjortoft (1953), who pointed out that, in that 
case, the total mean-square velocity and the total mean-square vorticity are 
each conserved: i.e. (V$)2 and (V2y9)2 are both constant, so that a transfer of 
kinetic energy to shorter wavelengths must be accompanied by a (greater) 
transfer to longer wavelengths. 

Not unexpectedly, viscosity acts to diminish the amplification rate for all 
waves, particularly the shorter ones, so that for initial flows with smaller Rey- 

- 
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nolds number the fastest growing wave is longer. Indeed, for R2 -+ 2 only the 
infinitely long wave can grow, and that infinitely slowly. 

The detailed calculations show that the amplifying eddies are oriented such 
that they tend to smooth the initial field of momentum, consistent with their 
reducing the initial mean kinetic energy, which is thereby made available for 
eddy kinetic energy and viscous dissipation. The inviscid stability problem is 
identical with that recently treated by Lorenz (19724.  

4. The developing motion 
In  order to follow the solutions of the fully nonlinear equations to large ampli- 

tudes it is necessary to represent the solutions in finite terms, and here it is 
convenient to do this by truncating the Fourier series for the stream function. 
The first-order perturbation solution truncated to two terms in the y direction 
suggests one way in which such an expansion might be generated. Substituting 

@ = A sinpy + B cos Ax + D sin Ax cospy (5) 

into the vorticity equation (2) gives terms in sinpy, cos Ax, cospysinhx, sinpy 
x cos 2hx and cos 2py coshx whose coefficients are listed as A,, A,, A,, A ,  and A,  
in the appendix with E = G = H = 0. Of these terms the first, second and third 
are of the lowest spatial frequency but can be made to vanish if the coefficients 
A ,  B and D satisfy three nonlinear ordinary differential equations (A,,  A,, 
A ,  = 0 from the appendix with E = G = H = 0). The terms A,  and A,, both 
of higher spatial frequency, cannot be eliminated and must remain as residual 
error in this truncation. 

A useful test of the error due to this approximation comes from solving the 
linearized stability problem for the truncated system. Because of the way the 
truncation has been chosen this reproduces (a), which, as shown by figure 1, 
is indeed a fairly good approximation. The $ field similarly truncated is found 
to be accurate to about 5 yo. 

5. Asymptotic steady state for simplest truncation 
The three simultaneous equations A,, A,, A ,  = 0 can be integrated (at least 

numerically) with respect to time to find a first approximation to the evolving 
flow. However, we are most interested in the final state of the motion. This can 
be found without going through the intermediate steps because the truncated 
solution eventually settles down to a new steady state, which we shall call a 
‘steady-eddy flow’. 

Some more precise numerical and analytic considerations of this evolution 
are reported later in this section and in 0 6, but first we shall show that the steady- 
eddy flow isindeed well defined. Making this assumption, hence putting dldt = 0 
(and still E = G = H = 0) in the equations A,, A,, A ,  = 0, gives solutions of two 
types : 

A = Xlvp3, B = D = Q ,  
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the laminar, equilibrium flow, or 

representing the steady-eddy motion. For the coefficient A to be real, p 2  must 
be less than unity. But if the pattern is the finite amplitude form of a growing 
eddy, $ 3 and the selection principle together show this to be true, for the numeri- 
cal value ofp2 is uniquely determined as a function of R by the maxima in figure 1 ,  
and is necessarily less than unity. The coefficient A must be positive for D to be 
real; so A is uniquely determined. The signs of B and D must be the same but may 
be positive or negative. This amounts to a change in x phase of r/h, but this phase 
merely defines the point along the initially uniform flow at which the eddy will 
grow so is physically indeterminate anyway. Thus, if the final motion is steady 
and defined, via the selection principle, by the initial conditions, it can be found 
from (6). Notice that this final steady state represents the finite amplitude form 
of an eddy which grew in the initial flow, and is not the same as the 'critical 
waves' of infinitesimal amplitude which just fail to grow, given by (r = 0. 

The amplitude of the new x-mean flow, given by A in (6) and shown as the thin 
curved line 3 P  in figure 2, is decreased compared with the laminar flow for the 
same forcing (the straight line in figure 2 )  because the transfer of momentum by 
the eddies is down-gradient and therefore adds to that due to viscosity. 

It is of interest to inquire whether this steady-eddy flow is stable, in the sense 
that all small deviations of A ,  B and D from their steady-eddy values decrease 
with time. If such deviations are assumed to be proportional to exp(qv,u2t) a 
little manipulation shows that the non-dimensional growth rate q satisfies 

q(q+1)(q+1+2p2)+(D2/4v2)((1+2p2)q+2p2(l+p2)) = 0. 

Stability is least likely when D2 3 v2, for which case 

The real part of all three roots being negative, all deviations from the steady- 
eddy state must decrease exponentially with time, showing that, in this sense, the 
steady eddy is a stable state. Results of a numerical test, reported in $6 and 
shown in figure 3, are at least qualitatively in agreement with this result. Lorenz's 
similar three-term analysis of convective motion (1963) also shows stability in 
the appropriate limit K v.  

6. More accurate solutions for the final steady state 
The truncation errors have become considerable by R = 5, and more accurate 

solutions are desirable. These can be obtained by adding Fourier coefficients to 
the expansion of $ and eliminating more of the lower order residuals. In  this 
way the complete set of functions generated from the initial perturbation could, 
in principle, be obtained. 

There are only two residuals in the thee-parameter approximation, given by 
the terms A,  and A, in the appendix, with E = G = H = 0. The coefficient of 
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FIGURE 2. Amplitude A of mean flow as a function of the amplitude x of the external 
forcing. The thin straight line shows the undisturbed steady, viscous, laminar solution. 
Curves 3P, 4P and 6P show steady viscous eddy solutions with three, four and six para- 
meters respectively; each solution uses the values of p 2  marked along the curves, which are 
consistent with the flow first attaining its steady laminar state then realizing its instability 
a t  the wavelength of maximum amplScation rate. Curves 3PC and 4PC show cascade eddy 
solutions with three and four parameters respectively: in the cascade set the value of p2 
is that for the maximum amplification rate of a dominant small amplitude instability of 
thefinal mean flow. The dashed line shows values deduced from the 'turbulence' law (11). 

cos Ax cos 2py is found to be small compared with the coefficient of cos 2hx sinpy, 
and in the next approximation the latter is eliminated by adding the term 

E cos 2hx sin puy 

to $ given by (5). This results in residuals of higher order, containing products 
involving E, being introduced, like A,  and A ,  in the appendix with C = H = 0, 
but the residuals are not all listed. The four simultaneous equations so defined, 
A,, . . ., A,  = 0 from the appendix, with C = H = 0, again admit an analytic 
solution in closed form and all solutions can be found explicitly. Thus, putting 
A = vRa and using the equations A,, . . . , A ,  = 0 to eliminate the coefficients 
D and E then eliminating B, we find the laminar solution a = 1, or the steady- 
eddy solution 

(1 + 3p2) (1 -a) 3 ( 1 - ~ )  2( 1 +p2)2 ) (a + 2( 1 + 4 p 2 ) 2 )  = ( 1  +p2) R2' 
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FIGURE 3. Coefficients A/vR and B/vR as a function of time, showing the behaviour of the 
mean flow and first eddy mode as the flow collapses. Notice the two distinct phases of 
evolution: the breakdown phase up to vp2t N 1 and the settling-down phase 1 < vp2t < 3, 
also the final dominance of the eddy mode over the mean flow. The results are from a 
numerical solution to the six-parameter system with R = 10, p2 = 0.4; this is not in fact 
the wavenumber of maximum amplification rate as is evident from figure 1, but its be- 
haviour is similar. 

where p is the function of R determined through figure 1 by appeal to the selec- 
tion principle. Of the two roots for a, one gives B imaginary so is rejected. The 
other gives B and D of the same undetermined sign, but as with the three-para- 
meter solutions this corresponds only to an ambiguity in the (x) phase of the eddy, 
which is unimportant so far as its structure is concerned. Thus again we can show 
that the condition that the final state should be steady defines the flow unam- 
biguously. Figure 2 shows, by a thicker line 4P, values of A using this approxima- 
tion and differing from the simplest approximation for R > 5 or so. 

The largest residuads in the four-parameter approximation can be eliminated by 
adding the further terms 

G cos 3py + H cos Ax sin 3pg 

to $, giving the equations A,, ..., A,  = 0 ,  obtained from the appendix (but 
without any of the residual terms). Analytic solutions could not be found, so 
numerical techniques were required. Even the numerical solution of such highly 
nonlinear simultaneous equations is by no means straightforward, so it was 
decided to integrate the time-dependent equations numerically with respect to 
time, starting from the solutions of small amplitude and proceeding until the 
final steady state was reached. This tests the previous assumption: that the solu- 
tions do indeed finally attain the asymptotic steady state. 
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In addition we get a picture of the temporal evolution as in figure 3, which 
shows an example of the variation with time of the two principal components of 
the flow. Evidently this evolution can be split into two separate phases, an in- 
stability phase in which the initial mean flow is eliminated mainly in favour of 
the B term, followed by a viscous phase in which the steady state is approached 
asymptotically. A number of such calculations .were carried through and these 
show that the same final, steady state is reached from a variety of initial values 
of the coefficients (provided that x and p2 are unchanged), showing that there is 
temporal convergence of the k i t e  amplitude motion using six parameters, as 
demonstrated in 3 5 for infinitesimal disturbances of the three-parameter solu- 
tion. 

Starting from a small but k i t e  perturbation of laminar flow, the time t ,  
required to attain a steady state is given approximately by 

t - 2- (".2) * - up2 R 
for values of R between 10 and 50: a time scale for the unstable collapse of the 
initial flow plus a time scale for viscous damping to the final steady state. For 
this range of Reynolds numbers the viscous damping phase takes longer, though 
most of the change in the mean flow takes place during the instability phase. 
Values of A for the final steady-eddy state are given by the thick curve 6P in 
figure 2. 

7. Convergence of successive solutions 
The successive approximations to $ given by the three-, four- and six-para- 

meter solutions correspond to truncation with respect to the total wavenumber 

k = (n2A2+rn2p2)* 

for the relevant range p 2  < 0.375 appropriate to the range R < 50, except that 
the term in cos2Axcos,~~y, whose residual is very small, has been ignored. 
Physical considerations lead one to suspect that a sequence of truncations in 
wavenumber space will converge because the action of viscosity is likely to limit 
the spread of energy into the higher wavenumbers. However, because of the 
unusual form of the equations for the steady-state coeilicients it is difficult to 
interpret the consequences of given values of the residuals at  any stage, other 
than in terms of the apparent consistency of the successive curves 3P, 4P and 
6P of figure 2 ,  which is some evidence for convergence. Moreover, the dominance 
of B over A in the final stage ensures a fairly systematic decrease of amplitude 
with wavenumber (recall that B has the smallest E ) .  This is illustrated by the 
mosses in figure 5, which are derived from the 6P-solution for R = 6, which is 
typical. 

The successive solutions appear to converge, at  least asymptotically, in the 
limit of small instability where p 2  + 0 and 

R = 24{ 1 + 3p2 + 0 ( p 4 ) } ,  

G = V{  - $ x 63p2 + 0(p4) ) ,  

A = ~ 2 9  { l + 0 ( p 4 ) } ,  
B = u6: {i + g p 2 +  0 ( ~ 4 ) ) ,  D = v{2 x 3iP + q P 3 ) } ,  E = 4 3  x 2+p2 + o(p4)), 

H = v{34p3 + O(p5))). 
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It is at  first sight surprising that, as shown by this limiting case, the coefficient 
B should be discontinuous at  the value (R2 = 2, p2 = 0) for critical stability, for 
B vanishes for R2 < 2. However, the contribution to the velocity represented by 
p B  is continuous, as is the kinetic energy, so all relevant physical variables are 
continuous. 

The solutions have one disturbing property, which arises because of their 
steady nature. The eddy wavelength has been supposed determined at the time 
when the eddies were small perturbations on the viscous-equilibrium flow. 
In  that respect the flow ‘remembers’ for ever its antecedents. An alternative, 
more plasusible, hypothesis might be that the dominant eddy is that which would 
grow fastest in the existing mean shear. This means that instead of finding the 
selected wavelength by using the Reynolds number for the equilibrium flow 
(R = x/v2p3) we should use a Reynolds number for the final mean flow, R, = A/v.  
The plausibility of this hypothesis, related as it is to an important selection 
principle, would repay being tested in a numerical experiment of much greater 
resolution. 

Curves 3P, 4 P  and 6 P  in figure 2 are changed a little when this refined selection 
principle is used, and a region of intermittency appears for x/v2p3 less than 3 or 
so, but the overall correction is not as large as that arising in the next section, 
and so we defer its application until then. 

8. The catastrophe and consequent cascade 
In  the steady-eddy flow, most of the kinetic energy appears in the first eddy 

mode (identified with wavenumber h = p p  and coefficient B)  and comparatively 
little energy remains in the original mean mode (identified with wavenumber ,u 
and coefficient A ) ;  the crosses in figure 5 ,  and the data of figure 3, show this ratio 
to be about 4 : l .  Thus the steady-eddy flow resembles the initial laminar flow 
in character, but with B replacing A ,  the scale increased to the wavenumber p p  
and the axes interchanged. Further, it is found that whenever R > 2h the final 
value of B/v likewise exceeds the critical value (2h) at which instability would 
occur in laminar flow, which suggests that the steady-eddy flow may itself be 
unstable (to still larger scales not yet allowed for in the calculations), and that 
it may break down in a similar way to the original laminar flow. If this is so then 
energy will appear at  the even-smaller wavenumber p2p. 

But the steady state of the secondary eddy might similarly be unstable (genera- 
ting energy at wavenumber p3p)  and so on in a cascade of instabilities, each taking 
energy to successively larger space scales. The kind of energy spectrum resulting 
from such a process is illustrated by the dots in figure 5 ,  where the peaks, spaced 
a factor p-l apart in wavelength, are apparent. The peaks are to be imagined to 
continue indefinitely to the left of Ic = 1, the energy-input wavelength. To the 
right, the spectrum will tail off roughly as indicated. 

The data plotted here are obtained from the closure proposition that the eddies 
representing the breakdown of the mean flow are themselves subject to the action 
of eddies, and that these second-order eddies bear the same relation to the first- 
order eddies as the first-order eddies do t o  the mean flow. 
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Suppose that, in the fully cascaded turbulence, there results a functional 
relation between the forcing x and the mean flow A. Dimensional considerations 
show that this can be written as 

x = yZpY(A/v), (7) 

where the function f, representing the combined effect of the momentum transfer 
by the turbulence and by viscosity, is to be found. Consider the three-parameter 
approximation to the flow; the equations corresponding to A, and A, remain, 

( 8 )  
as before, 

~ ( h ~ + p , ) , D - ~ p ( p , - - z ) A B  = 0.  (9) 

vp4A + +Ap3BD = px = v2p4 f ( A / v ) ,  

However, for scale B there is the energy input forced from other modes, repre- 
sented by the term Q h3pAD, and the effect of the viscosity and the eddies gener- 
ated by the B mode itself, which, according to the closure hypothesis, is represen- 
ted by a term v2A4f(B/v), where f is the same function as that defined by (7). Thus 
the set is closed by an equation analogous to (8), above, but involving B in place 
of A :  

$A3pAD = v2A4f(B/v). 

This takes the place of the previous equation A ,  = 0. 
The system (8)-( lo), together with the refined selection principle of 5 7 (enter- 

ing figure 1 with argument R, = A / v  in order to find A),  determines corresponding 
values of A ,  B, D and f; and figure 2 shows by the curve 3PC the relation between 
A and R, i.e. displays the inverse of the function f, for this three-parameter 
cascaded system. 

Including the additional parameter E ,  but supposing the cascade still to 
operate only through the B scale, gives the four-parameter cascade system 
shown by the curve 4PC. 

Figure 2 shows that the intensity of the mean cascade flow lies between that 
of the laminar and steady-eddy solutions. This is not an unexpected result 
bearing in mind the weakening of the fist-order eddy flow due to the action of the 
higher order eddies. The three-parameter and four-parameter approximations 
are in fair quantitative agreement over the range 2 < x/v2p3 < 9, where the 

(11) 
expression x = 0.62p3A2 or f (A/v)  = 0 - 6 2 ( A / ~ ) ~ ,  

shown as the dashed curve in figure 2, is a close approximation. Remarkably, 
this is precisely the form in which the explicit effect of viscosity disappears, 
in the terms on the right-hand sides of (8) and ( lo) ,  which represent the transfer 
of momentum by the eddies and by viscosity. Thus even for the modest values 
of the Reynolds number considered here the transfer of momentum by the 
turbulence is, within the likely error due to truncation, independent of the 
Reynolds number and is therefore likely to be that appropriate to the inviscid 
system. This is despite the fact that the energy spectrum is well within the viscous 
dissipation regime (see 0 9). 

The four-parameter solution for all the coefficients is shown in figure 4, from 
which it can be seen that the dominance of the secondary flow over the primary 
is less marked when the energy cascades, compared with the situation when the 

(10) 
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FIGURE 4. Dominant wavenumber I)* and flow coefficients as a function of the external 
forcing for the four-parameter approximation to cascade turbulence ; the dominant wave- 
number is that for the final mean flow. Dashed lines are A and B according to the three- 
parameter approximation, showing fair agreement over this range. Notice that the 
dominance of the first eddy mode B over the mean flow A is not now so marked as it was in, 
say, figure 3. 

dissipation is viscous. This means that our assumption that the stability of the 
primary eddy could be consideredindependently of the mean flow is less obviously 
acceptable when the flow is cascaded. Though this throws some doubt on the 
notion of a cascaded system, at least in the simple form suggested here, the law 
for the spatial transfer of momentum by the eddies is unlikely to be modified 
substantially by the adoption of any other hypothesis for the transfer of energy 
to larger wavenumbers. For example, viscous dissipation of the eddy motion 
(e.g. the line 6P in figure 2) gives a stress law similar to that of (1 1) but with a 
numerical coefficient of about 1.4. 

Again a numerical experimeni could be designed to clarify the life history of 
flow consisting initially of two superposed harmonic modes. Also, because the 
penetration of energy to longer wavelengths occurs through the cascade mechan- 
ism a comparison between the spectrum resulting from a numerical model of two- 
dimensional turbulence and figure 5 would be valuable. 

9. Energy spectrum 
The data of figure 4 allow the spectrum of kinetic energy to be calculated for 

the truncated but cascaded system. For a given value of xIv2p3 values of A ,  B, D 
and E may be read off, the effect of the second-order cascade of energy starting 
with coefficient B being allowed for by (10). The values of the second-order 



Two-dimensional turbulence 285 

I 

0.2 0.4 0.6 0.8 1.0 1.2 1.6 2.0 
1.4 l . X \  

\ 
k = (kt + kE)+ 

FIGURE 5. Example of the distribution of kinetic energy with wavenumber for flow with 
R = x/vZpa = 6, plotted on logarithmic scales : x , when the eddies are steady and con- 
trolled by viscosity; e, when there is a cascade of eddies. The total wavenumber k ,  
defined such that k2 is the sum of the square of the wavenumbers in the x and y directions, 
is normalized so that k = 1 represents the scale of energy input. The spectrum is, of course, 
discrete and the lines joining the points are intended only to guide the eye. The steady-eddy 
solution is for the six-parameter system though the parameter G contributes so little energy 
that it is masked by that for E,  which occurs a t  the same wavelength. The cascade solution 
is for the four-parameter system. Because only four parameters are available the shorter 
wavelength components of each mode are absent. Their likely behaviour is indicated by 
the thin lines. 

coefficients can then be found by using the forcing to the second-order cascade: 
gh3AD in place of x together with appropriate values of p from figure 1 using 
Blv  (in place of Alv) for the value of R in the figure. By repeating this process the 
complete cascaded spectrum can, in principle, be calculated though we soon 
run out of the range of plausibility of figure 4 because the effective values of R 
increase at each stage. Thus the value x/vz,u3 = 6 gives A = 3 . 1 5 ~  for the mean 
flow (plotted at  k = 1 in figure 5 )  and gives B = 4 . 7 5 ~  for the first eddy mode 
(plotted at k = 0-45), giving, somewhat uncertainly, B= 8 . 7 ~  for the first cas- 
cade (plotted at  k = 0.20). 

Enough data remain to show the general form of the spectrum. Comparing 
the cascade spectrum (dots in figure 5 )  with the viscous steady-eddy flow (crosses 
in figure 5 ) ,  we notice that the penetration of energy into wavenumbers higher 
than that of the energy input (defined by k = 1 in figure 5 )  is nearly independent 
of the mechanism operating at  lower wavenumbers. In  fact the energy falls off 
like k-5 on the short-wave side: much faster than for an inertial subrange because 
we are still well inside the viscous dissipation range, even for the value 

Xpp3 = 12, 
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which is about the largest for which the calculations may be supposed reasonably 
accurate. At  this value, 35 % of the dissipation of kinetic energy still takes place 
through the mean mode A (29 % through B and the cascade, 23 % through D 
and 13 % through E ) .  

The spectrum at wavenumbers lower than the input wavenumber is very dif- 
ferent in the two cases. With steady viscous control, long-wave energy appears 
at  a single wavelength given by I% = 0.45, whereas in the cascaded system this 
mode splits into one longer component appearing at  k = 0.20 and a sequence of 
shorter modes extending off to the right. The longer mode splits similarly, giving 
rise to an indefinitely continued saw-tooth spectrum. According to figure 5 
the kinetic energy falls off roughly in proportion to  7c on the long-wavelength side, 
and it is this comparatively great extension of energy into long waves that could 
be a decisive test of the theory. 

I would like to record my thanks to Professor P. A. Sheppard, who, many 
years ago, stimulated my interest in the problem of the spectral distribution of 
energy emanating from a well-defined scale of input. 

Appendix. Two-dimensional vorticity equation in wavenumber space 

4 O5 I a' - A ,  sinpy + A ,  cos Ax + A ,  sinhx cospy 
v' @ Dt p ay 

+ A ,  sinpy cos 2hx + A ,  cos 3Ax + A, sin 3hx cos py + A ,  cos Ax cos 2py + . . . , 
where 

A ,  = p2 dAldt -t- vp4A + +Ap3 BD + $Ap3 GH - PX, 
A ,  = hzdB/dt + vh4B - 4A3p A D  - $A3pDE - ;A3pHE, 

A ,  = ( h 2 + p 2 ) d D / d t + ~ ( h ~ + p ~ ) ~ D - h p ( p ~ - h ~ )  AB++Ap(p2+3A2) BE 

- $hp(p2 - 5h2) GE, 

A ,  = (p' + 4A2) dE/dt + V(P' + 4A2), E - +Ap3BD + $Ap(p2 - 8h2) DG 

i- +Ap(p2 + ah2) B H ,  

A ,  = 9A2 dGldt + ~8 Ih4 G + Qhp3 DE - 2$Ap3AH, 

A,  = (p' + gA2) dH/dt + v(p2 + 9h2)2 H - 3hp(p' - 9A2) AG - +Ap(p2 + 3A2) BE, 

A,  = -4A3pAD. 

(9 = A sinpy + B cos Ax + D sin Ax cospy + E cos 2hx sinpy + G cos 3py 

+ H cos Ax sin 3,uy.) 



Two-dimensional turbulence 287 

REFERENCES 

FJ0RTOFT, R. 1953 On the changes in the spectral distribution of kinetic energy for two- 

GREEN, J. S. A. 1970 Transfer properties of thelarge-scale eddies and the general circula- 

LIN, C. C. 1955 T h e  Theory of Hydrodynamic Stability. Cambridge University Press. 
LORENZ, E. N. 1963 Deterministic nonperiodic flow. J .  Atnaos. X c i .  20, 130-141. 
LORENZ, E. N. 1972a Barotropic instability of Rossby wave motion. J .  Atmos. Xci. 29, 

LORENZ, E. N. 1972b Low-order models representing realizations of turbulence. J .  Fluid 

dimensional nondivergent flow. Tellus, 5,  225-230. 

tion of the atmosphere. Quart. J .  Roy.  Met.  Xoc. 96, 157-185. 

257-264. 

Mech. 55, 545-563. 


